GATE paper - Production and Industrial Engineering 2009

Q. 1 - Q. 20 carry one mark each.

1.	The homogeneous part of the differential equation								
	$\frac{d^2y}{dx^2} + I$	$p\frac{dy}{dx} + qy = r (p_x)$, q and r	are constants) h	nas real	distinct roots if			
		$p^2 - 4q > 0$				$p^2 - 4q = 0$	(D)	$p^2 - 4q =$	r
2.		al derivative of t		,	(-)		<i>(</i> -)		
	(A)	xdy + ydx	(B)	xdx + ydy	(C)	dx + dy	(D)	dx dy	
3.	A helical compression spring has: $d = wire diameter$, $D = mean coil diameter$, $E = Young's mode G = modulus of rigidity and N_a = number of active coils. The spring stiffness is$								
	(A)	d ⁴ E	(B)	$\frac{d^4G}{8D^3N_a}$	(C)	$\frac{D^4E}{8d^3N_a}$	(D)	$\frac{D^4G}{8d^3N_a}$	
	()	$8D^3N_a$	(5)	$8D^3N_a$	(0)	8d ³ N _a		8d ³ N _a	
4.				s is NOT execute	-	ideal Rankine cy		no superl	neat?
	(A) (C)	Isentropic expa constant tempe		eat addition	(B) (D)	Isentropic comp Constant tempe		neat rejecti	on
5.	During	the numerical so	olution of	f a first order diff	ferential	equation using t	he Eulei	r (also kno	wn as
	Euler C (A)	auchy) method v h ²	with step (B)	size h, the local h ³	truncat (C)	ion error is of the	e order ((D)	of h ⁵	
4			, ,				(5)		
6.	(A)	owned by the ii		20 years, the pa	(B)	renewed and m	aintaine	d	
	(C)	novel			(D)	non-obvious			
7.	As per (A)	Kendall's notatio beta distribution		i/c queuing syste	em, the r (B)	number of arriva Normal distribu		xed time fo	ollows
	(C)	Poisson distribu			(D)	Uniform distribu			
8.						ounts for seasona			
	(A) (C)	Simple moving Holt's model	average	model	(B) (D)	Simple exponer Winter's model	itial smo	othing mo	del
9.	A typica	al Fe-C alloy con	taining o	reater than 0.89	6 С is kr	nown as			
,	(A)	Eutectoid steel	tulling g	reater than 0.07	(B)	Hypoeutectoid s			
	(C)	Mild steel			(D)	Hypereutectoid			
10.		pacity of a mater ed is termed as	rial to ab	sorb energy whe	en defori	med elastically, a	ind to re	elease it ba	ick when
	(A) (C)	toughness ductility			(B) (D)	resilience malleability			
		J		. (0 :0)	. ,	Š			
11.	(A)	oduct of the com (1 + i6)	ipiex nur (B)	nbers (3 – i2) an (9 – i8)	(C)	1) results in (9 + i8)	(D)	(17 + i6)	
			1	3 2					
12.	The val	ue of the detern	ninant 4	1 1 is					
	(A)	-28	(B)	1 3 -24	(C)	32	(D)	36	
	(^)	20	(D)	4 7	(0)	JZ	(D)	30	

GATE paper - Production and Industrial Engineering 2009

- 13. If module and number of teeth of a spur gear with an involute profile are 3 mm and 23 respectively, then the pitch diameter (in mm) of the spur gear is
 - (A) 7.67
- (B) 15.34
- C) 34.50
- (D) 69.00

- 14. Hot chamber die casting process is NOT suited for
 - (A) lead and its alloy

(B) Zinc and its alloys

(C) Tin and its alloys

- (D) aluminum and it salloys
- 15. The total angular movement (in degrees) of a lead-screw with a pitch of 5.0 mm to drive the work-table by a distance of 200 mm in a NC machine is
 - (A) 14400
- (B) 28800
- (C) 57600
- (D) 72000

- 16. Anisotropy in rolled components is caused by
 - (A) change in dimensions
- (B) scale formation

(C) closure of defects

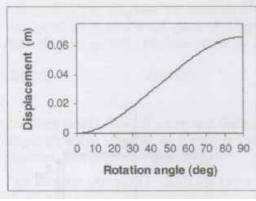
- (D) grain orientation
- 17. Which of the following processes is used to manufacture products with controlled porosity?
 - (A) Casting
- (B) Welding
- (C) forming
- (D) Powder metallurgy
- 18. Which of the following powders should be fed for effective oxy-fuel cutting of stainless steel?
 - (A) Stee
- (B) Aluminum
- (C) Copper
- (D) Ceramic

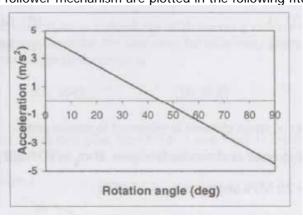
- 19. An autocollimator is used to
 - (A) measure small angular displacements on flat surface
 - (B) compare known and unknown dimensions
 - (C) measure the flatness error
 - (D) measure roundness error between centers
- 20. Diamond cutting tools are not recommended for machining of ferrous metals due to
 - (A) high tool hardness

(B) high thermal conductivity of work material

(C) poor tool toughness

- (D) chemical affinity of tool material with iron
- 21. The value of x_3 obtained by solving the following system of linear equations is


$$x_1 + 2x_2 - 2x_3 = 4$$


$$2x_1 + x_2 + x_3 = -2$$

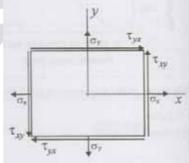
$$-x_1 + x_2 - x_3 = 2$$

(A) -12

- B) –2
- (C) 0
- (D) 12
- 22. The displacement and acceleration of a cam follower mechanism are plotted in the following fitures:

The nature of the displacement curve is

(A) Cubic

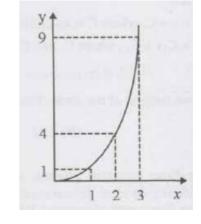

(C)

Simple harmonic

- (B) Quadratic
- (D) Linear

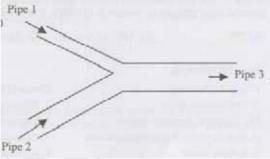
GATE paper - Production and Industrial Engineering 2009

- 23. The solution of the differential equation $\frac{d^2y}{dx^2} = 0$ with boundary conditions: (i) $\frac{dy}{dx} = 1$ at x = 0 and
 - (ii) $\frac{dy}{dx} = 1$ at x = 1, is
 - (A) y = 1
 - (B) y = x
 - (C) y = x + C, where C is an arbitrary constant
 - (D) $y = C_1x + C_2$, where C_1 and C_2 are arbitrary constants
- 24. The line integral of the vector function $\vec{F} = 2x\hat{i} + x^2\hat{j}$ along the x-axis from x = 1 to x = 2 is
 - (A) 0
- (B) 2.33
- (C) 3
- (D) 5.3
- 25. using direct extruction process, a round billet of 100 mm length and 50 mm diametr is extruded. considering an ideal deformation process (no friction and no redundant work), extrusion ratio 4, and average flow stress of material 300 MPa, the pressure (in MPa) on the ram will be
 - (A) 416
- (B) 624
- (C) 700
- (D) 832
- 26. A friction clutch is designed to transmit 15 horsepower at 1500 rpm. the torque (in N⋅m) experienced by the clutch is
 - (A) 1.19
- (B) 7.46
- (C) 71.24
- (D) 447.61
- 27. A manufacturer has set up an assembly line where first, Task I is performed in Workstation 1 for 0.3 minutes; then Task II is performed in Workstation 2 for 0.4 minutes; and finally Task III is performed in workstation 3 for 0.3 minutes. The efficiency (in %) of this assembly line setup is
 - (A) 33.33
- B) 64.33
- (C) 75.33
- (D) 83.33
- 28. A biaxial stress element in subjected to tensile and shear stresses as shown n the figure. If $\sigma_y = 20$ MPa and $\tau_{xy} = \tau_{yx} = 15$ MPa. the principal normal stress (in MPa) are:


- (A) 5 and 55
- (B) 10 and 30
- (C) 12 and 48
- (D) 20 and 42

29. The area under the curve shown, between x = 1 and x = 3 is to be evaluated using the trapezoidal rule. The following points on the curve are given.

Point	X coordinate (m)	Y coordinate (m)
1	1	1
2	2	4
3	3	9


3 3 9

The evaluated area in (in m²) will be
(A) 7 (B) 8.67
(C) 9 (D) 18

GATE paper - Production and Industrial Engineering 2009

- 30. The pressure drop for laminar flow of a liquid in a smooth pipe at normal temperature and pressure is
 - directly proportional to density
 - inversely proportional to density (B)
 - (C) independent of density
 - proportional to (density)0.75 (D)
- 31. A titanium sheet of 5.0 mm thickness is cut by wire-cut EDM process using a wire of 1.0 mm diameter. A uniform spark gap of 0.5 mm on both sides of the wire is maintained during cutting operation. If the feed rate of the wire into the sheet is 20 mm/min, the material removal rate (in mm³/min) will be
 - (A) 150
- (B) 200
- (C) 300
- (D) 400
- 32. Autogenous gas tungsten are welding of a steel plate is carried out with welding current of 500 a, voltage of 20 V, and weld speed of 20 mm/min. Consider the heat transfer efficiency from the arc to the weld pool as 90%. the heat input per unit length (in kJ/mm) is
 - (A) 0.25
- (B) 0.35
- 0.55 (D)
- 33. Consider steady flow of water in a situation where two pipe lines (Pipe 1 and Pipe 2) combine into a single pipe line (Pipe 3) as shown in the figure, the cross-sectional areas of all three pipelines are constant. The following data is given:

Pipe Number Area (m²)

Velocity (m/s)

- 1 2
- 2 2.5
- 1 2

Assuming the water properties and the velocities to be uniform across the cross section of the inlet and the outlet, the exit velocity (in m/s) in pipe 3 is

(A)

1.5

- 2
- (D) 2.5

Match the following: 34.

Group I (Layout types)

- P. Process layout
- Q. Product flow layout
- R. Fixed position layout
- S. Cellular layout
- (A)
- P 4, q 1, R 3, S 2 P 2, Q 1, r 4, S 3 (C)
- Group II (Layout charactreistics)
- 1. Inflexible to significant changes in product design
- 2. Distinct part families and expanded worker training
- 3. Low equipment utilization and high skill requirement
- 4. Large work-in-process and increased material handling
- P-4, Q-3, R-2, S-1 (B)
- P-1, Q-4, R-3, S-2 (D)
- 35. Consider the joint probability mass function of random variables X and Y as shown in the table below: For instance, $P \{X = 1, Y = 2\} = 0.3$

	X = 1	X = 2						
Y = 1	0.2	0.3						
Y = 2	0.3	0.1						
Y = 3	0.1							

The value of P $\{X = 2 \mid Y = 2\}$ is

- (A) 0.10
- (B)
- 0.25
- (C) 0.40
- (D) 0.75

GATE paper - Production and Industrial Engineering 2009

36.	A grocery store faces a demand of 50 units of soap per day. The store orders soap periodically. it costs Rs. 100 to initiate a purchase order. It costs Rs. 0.04 per soap per day to store the soap. The lead time between placing and receiving the order is 4 days. The optimal inventory policy for ordering soap is to (A) order 500 unit of soap whenever inventory level drops to 200 units (B) order 500 units of soap whenever inventory level drops to 100 units (C) order 1000 units of soap whenever inventory level drops to 200 units (D) order 1000 units of soap whenever inventory level drops to 100 units									
37.	A disk of 200 mm diameter is blanked from a strip of an aluminum alloy of thickness 3.2 mm. The material shear strength to fracture is 150 MPa. The blanking force (in kN) is (A) 291 (B) 301 (C) 311 (D) 321									
38.	Match the following: Group I (Product) P. Refrigerator liners Q. Composite pressure vessels R. Hollow parts of thermoset plastics 4. Rubber sheets (A) P-2, Q-1, r-4, S-3 (C) P-1, Q-4, R-2, s-3 Group II (manufacturing process) 1. Filament winding 2. thermoforming 3. Calendering 4. Rotational moulding (B) P-1, Q-2, R-3, S-4 (C) P-2, Q-4, R-1, S-3							4		
39.	Match t (A) (C)	che following: Group I (Device P. Jig Q. Fixture R. Clamp s. Locator P - 4, Q - 3, R P - 1, Q - 4, R	- 1, S - 2	 holds the wo holds and po holds and po during a machi 	te the workpiece ositions to sitions to sitions to sitions to sitions to sitions (B)	only he workpiece he workpiece	e and guide			
40.	The spur gear having a pressure angle of 20°, module of 3 mm and 40 teeth is to be inspected for its pitch circle diameter using two rollers (test plug method). If the centres of the rollers lie on the pitch circle, the suitable roller diameter (in mm) and the resulting distance 9in mm) between the rollers placed in opposite spaces will respectively be (A) 2.9 and 82.9 (B) 2.9 and 165.9 (C) 5.9 and 82.9 (D) 5.9 and 165.9									
41.	A company makes a product using three independent components I, II, and III with reliabilities of 0.80, 0.85 and 0.90 respectively. If the company decides to add one redundant unit of component I to improve reliability, then the reliability of the product is									
42.										

GATE paper - Production and Industrial Engineering 2009

43.	A spare parts retain shop has sales of Rs. 4,00,000 and a profit of Rs. 50,000 for a product, in its first quarter. The profit volume (PV) ratio is 25%. The margin of safety = profit / PV ratio. The break even point of sales (in Rs.) is											
	(A)	20,000	(B)	40,000	(C)	2,00,000	(D)	4,00,000				
44.	The following information relates to worker's payment in a company: Standard production of a worker = 12 jobs per hour Standard job rate = Rs. 3.00 per job											
		•	y for production less than standard = 85% of standard job rate y for production more than standard = 120% of standard job rate									
	Th	•				-		C. II a sure de se				
		workers produce ur based on diffe					total pay	y for three workers				
	(A)	Rs. 117.00	(B)	Rs. 128.85	(C)	Rs. 1404.00	(D)	Rs. 1546.20				
45.	Match 1	the following:					2)					
		Group I (Protect	tion type	e)	Group	I (Example in th	ne Indian	context)				
		P. Patent	31	,	manual of a product							
		Q. Trademark			2. appearance of an MP3 player							
		R. Copyright			3. Logo of a company							
		S. Industrial de	sign		4. Microprocessor							
	(A)	P - 2, Q - 4, R -	· 3, S - 1		(B) P - 4, Q - 1, R - 3, S - 2							
	(C)	P - 2, Q - 3, R -	4, S - 1		(D)	P - 4, Q - 3, R	- 1, S - 2	2				
46.	Match (A) (C)	the following: Group I (Design P. Form design Q. Concurrent of R. Value analys S. Product life of P - 4, Q - 1, R - P - 4, Q - 3, R -	engineer is cycle 2, S - 3	ing	Group II (Description) 1. introduction, growth, maturity and decline 2. Determines cost of each function of the design 3. Integration of product design and manufacturing 4. Appearance, shape, colour and size of product (B) P - 3, Q - 2, R - 4, S - 1 (D) P - 4, Q - 2, R - 3, S - 1							
47.	In an orthogonal machining operation, the tool life obtained is 10 min at a cutting speed of 100 m/min, while at 75 m/min cutting speed, the tool life is 30 min. The value of index (n) in the taylor's tool life equation (A) 0.262 (B) 0.323 (C) 0.423 (D) 0.521											
48.	A solid cylinder of diameter D and height equal to D, and a solid cube of side L are being sand cast by using the same material. Assuming there is no superheat in both the cases, the ratio of solidification time of the cylinder to the solidification time of the cube is (A) $(L/D)^2$ (B) $(2L/D)^2$ (C) $(2D/L)^2$ (D) $(D/L)^2$											
			, ,	•		, ,	\- /	· -/				
49.	Following are some possible characteristics of a pile of power mixture: P. Low inter particle friction Q. High inter particle friction R. Low porosity S. High porosity If the angle of repose for a pile of power mixture is low, it will exhibit											
	(A)	P and R	(B)	P and S	(C)	Q and S	(D)	Q and R				

GATE paper - Production and Industrial Engineering 2009

50. Match the following:

(A)

(C)

Group I Group II P. Relational DBMS 1. SQL Q. Primary key 2. AND, OR R. Retrieving data 3. Tables, columns and rows S. Boolean search 4. Columns that uniquely identify a row P - 3, Q - 4, R - 2, S - 1 P-3, Q-1, R-4, S-2 (B) P-3, Q-4, R-1, S-2 (D) P-4, Q-1, R-2, S-3

Common Data Questions

Common Data for Questions 51 and 52

Consider the Linear Programming Problem (LPP)

Maximize $z = 4x_1 + 3x_2 + 2x_3$ Subject to:

> $2x_1 + x_2 + 2x_3 \le 50$ (constraint 1) $x_1 + x_2 + x_3 \le 30$ (constraint 2) $x_1, x_2, x_3 \ge 0$

The associated simplex tableau at optimality is shown below, there s_1 and s_2 repreent the slacks for constraints 1 and 2, respectively.

	x ₁	X_2	X_3	S ₁	S ₂	RHS
z-row	0	0	2	1	2	110
X ₁	1	0	1	1	-1	20
_ X ₂	0	1	0	-1	2	10

51. Basic variables in the optimal solution are

(A) s_1 and s_2

(B) x_1 and x_2

(C) $x_1, x_2 \text{ and } x_3$

(D) x_3 , s_1 and s_2

52. suppose that in the LPP given, the right hand side of constraint 1 changes from 50 to 40. The new objective value is

(A) 90

(B) 100

(C) 110

(D) 120

Common Data for Questions 53 and 54:

In acceptance sampling, the probability distribution of the number of defectives X in a sample can be

approximated as a Poisson distribution, Prob $\{X = k\} = \frac{[(np)^k e^{-np}]}{k!}$, for k = 0, 1, 2 ..., where n is the sample

size and p is the actual proportion or percent of defective items in a batch.

a company receives a shipment batch of N = 2000 items. the sampling plan followed by the company is to sample n = 50 items from the batch and accept the batch if the number of defective items are 2 or less. let the acceptable Quality Level (AQL) be 0.02 and the Lot Tolerance Percent Defective (LTPD) be 0.05.

53. The probability of incorrectly rejecting a good batch or the Producer's risk is

(A) 0.0805

(B) 0.3678

(C) 0.5437

(D) 0.9195

54. The probability of incorrectly accepting a bad batch or the Consumer's risk is

(A) 0.0805

(B) 0.3678

(C) 0.5437

(D) 0.9195

Common Data for Questions 55 and 56:

An orthogonal turning operation is carried out at 20 m/min cutting speed, using a cutting tool of rake angle 15°. The chip thickness is 0.4 mm and the uncut chip thickness is 0.2 mm.

55. The shear plane angle (in degrees) is

(A) 26.8

(B) 27.8

(C) 28.8

(D) 29.8

GATE paper - Production and Industrial Engineering 2009

56		The ch	nip velc 8	city (in m/	min) is (B)	10	(C)	12	(D)	14
Step For Early Journal	aten ur jo	bs need achine	r Link I to be	ed Answe processed	sequen one job		chines, 1			nen on Machine N. n in the table below:
57		The op (A) (C)	1 - 11	sequence o - III - IV III - I - II	of jobs tl	hat will minimize	e makesp (B) (D)	oan (total time re - -		o complete all jobs) is
58	i.			os are proc on Machir		ased on the opt	imal seq (C)	uence tha tminin	nizes ma (D)	kespan, the totla idle
Statement for Linked Answer Questions 59 and 60: Resistance spot welding of two steel sheets is carried out in lap joint configuration by using a welding current of 3 kA and a weld time of 0.2 s. A molten weld nugget of volume 20 mm³ is obtained. The effective contact resistance is 200 $\mu\Omega$ (micro-ohms). The material properties of steel are given as: (i) latent heat of melting: 1400 kJ/kg, (ii) density: 8000 kg/m³, (iii) melting temperature: 1520°C, (iv) specific heat: 0.5 kJ/kg°C. The ambient temperature is 25°C.										
59		Heat (i	in Joule 324	es) used fo	or produ (B)	cing weld nugge 334	et will be (C)	(assuming 1009 344	% heat ti (D)	ransfer efficiency) 354
60).	Heat ((A)	in Joule 10	es) dissipa	ted to th	ne base metal w 16	ill be (ne (C)	eglecting all othe 22	r heat lo (D)	sses) 32
	End of the Question Paper									